Answer:
v_f = 0.87 m/s
Explanation:
We are given;
F_avg = -17700 N (negative because it's backward)
m = 117 kg
Δt = 5.50 × 10^(−2) s
v_i = 7.45 m/s
Now, formula for impulse is given by;
I = F•Δt = - 17700 x 5.50 × 10^(−2) = - 973.5 kg.m/s
From impulse momentum theory, we know that;
Change in momentum of particle is equal to impulse.
Thus,
Δp = I = m•v_f - m•v_i
Thus,
-973.5= 117(v_f - 7.45)
Thus,
-973.5/117 = (v_f - 7.45)
-8.3205 + 7.45 = v_f
v_f = - 0.87 m/s
We'll take absolute value as;
v_f = 0.87 m/s
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:

Answer:
time to fall is 3.914 seconds
Explanation:
given data
half distance time = 1.50 s
to find out
find the total time of its fall
solution
we consider here s is total distance
so equation of motion for distance
s = ut + 0.5 × at² .........1
here s is distance and u is initial speed that is 0 and a is acceleration due to gravity = 9.8 and t is time
so for last 1.5 sec distance is 0.5 of its distance so equation will be
0.5 s = 0 + 0.5 × (9.8) × ( t - 1.5)² ........................1
and
velocity will be
v = u + at
so velocity v = 0+ 9.8(t-1.5) ..................2
so first we find time
0.5 × (9.8) × ( t - 1.5)² = 9.8(t-1.5) + 0.5 ( 9.8)
solve and we get t
t = 3.37 s
so time to fall is 3.914 seconds
Listen if you have to cheat for the dba thing not worth even doing that dba tbh this is very easy as I just did it in like 5 minutes it gives you everything you need even the formulas so use your f .u .c .k. 1 .n g brain you monkey...
First, find the work done. W = f*d, so 160 N * 1 m = 160 J. Then divide the work by the time to get the power. P = W/t. P = 160 J / 0.5 s = 320 W.
The answer is 320 W. Hope this helps, and have a great day! :)