Answer:
8.829 m/s²
Explanation:
M = Mass of Earth
m = Mass of Exoplanet
= Acceleration due to gravity on Earth = 9.81 m/s²
g = Acceleration due to gravity on Exoplanet



Dividing the equations we get

Acceleration due to gravity on the surface of the Exoplanet is 8.829 m/s²
Answer:
Yes is large enough
Explanation:
We need to apply the second Newton's Law to find the solution.
We know that,

And we know as well that

Replacing the aceleration value in the equation force we have,

Substituting our values we have,


The weight of the person is then,


<em>We can conclude that force on the ball is large to lift the ball</em>
You start by writing down your parameters;
u=60m/s
v=0
t=8s
So acceleration(a)=v-u/t
=0-60/8
=-60/8
=-7.5m/s
To the nearest hundredth will be
-7.5*100
=-750m/s
A
The horizontal force cancels out. The two 4Ns go in opposite directions. So they don't affect the outcome.
The Vertical force is 6N up - 2 N down = 4 N Up
Answer 4 N up
B
The horizontal and vertical forces cancel out. Each gives 3N - 3N =0
The net force is 0
C
You only have horizontal forces on this one
5N - 3N = 2N
The answer is 2N to the right.