Answer:
$$\begin{align*}
P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$
Explanation:
\eqalign{
P(Y-X=m\mid Y\gt X)
&=\sum_kP(Y-X=m,X=k\mid Y\gt X)\cr
&=\sum_kP(Y-X=m\mid X=k,Y\gt X)\,P(X=k\mid Y>X)\cr
&=\sum_kP(Y-k=m\mid Y\gt k)\,P(X=k\mid Y\gt X)\cr
}
P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$
Answer:
1. Yes.
2. Localized corrosion
Explanation:
Should she be worried about corrosion?
Yes, the engineer needs to be worried about corrosion as stainless steel has a lower resistance to corrosion, in other words, stainless steel corrodes faster than Titanium.
If so, what types of corrosion could take place?
The type of corrosion that takes place is called Localized corrosion. Localized corrosion occurs when a small part of a component experiences corrosion. In this case, the ball component of the femoral stem is made of stainless steel which will corrode faster than the other parts of the femoral stem which is made of Titanium.
Answer:
enables the representation, analysis and communication of various aspects of an information system. These aspects correspond to varying and incomplete views of information systems and the processes therein.
It would be ten because your ten feet away
Answer:
Explanation:
Given
charge is placed at 
another charge of
is at 
We know that Electric field due to positive charge is away from it and Electric field due to negative charge is towards it.
so net electric field is zero somewhere beyond negatively charged particle
Electric Field due to
at some distance r from it

Now Electric Field due to
is

Now 



thus 
Thus Electric field is zero at some distance r=1.43 cm right of