<span>Mass of rock 1 is m1 = 10 kg Mass of rock 2 is m2 = 20 kg 10-kg rock takes T (the same time ) to reach the ground as similar to 20-kg rock that takes time T to reach the ground. If no air resistance is present, the rate of descent depends only on how far the object has fallen, no matter how heavy the object is. This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height. This statement follows from the law of conservation of energy and has been demonstrated experimentally by dropping a feather and a lead ball in an airless tube.
When air resistance plays a role, the shape of the object becomes important. THUS 10-KG & 20-KG ROCK reaches the ground in T-time</span>
Answer:
(a). The draw-down at a distance 200 m from the well after pumping for 50 hr is 5.383 m.
(b). The draw-down at a distance 200 m from the well after pumping for 50 hr is 6.707 m.
Explanation:
Given that,
Energy 
Transmissivity 
Storage coefficient 
Distance r= 200 m
We need to calculate the draw-down at a distance 200 m from the well after pumping for 50 hr
Using formula of draw-down

Put the value into the formula


We need to calculate the draw-down at a distance 200 m from the well after pumping for 200 hr
Using formula of draw-down

Put the value into the formula


Hence, (a). The draw-down at a distance 200 m from the well after pumping for 50 hr is 5.383 m.
(b). The draw-down at a distance 200 m from the well after pumping for 200 hr is 6.707 m.
Force=tension-fg sin ∅
=140-mg sin 18.5
=140-124.35
=15.62N
a=f/m=15.62/40=0.39
now,
v²=u²+2as
=2×0.39×80
v²=62.4
v=7.8m/s
In pounds? Cuz if so 2.2 x 4.3 = 9.46