Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²
Answer:
v (speed) = S / t = 4 * 400 m / (6 * 60 sec) = 4.4 m/s
The average velocity is zero because there is no net vector displacement.
1. Gas
2. Hot
Are the answers.
To develop this problem it is necessary to apply the concepts related to Sound Intensity.
By definition the intensity is given by the equation

Where,
I = Intensity of Sound
= Intensity of Reference
At this case we have that 15 engines produces 15 times the reference intensity, that is

And the total mutual intensity is 100 dB, so we should




Therefore each one of these engines produce D. 88dB.
The change in the angle of circular motion is analogous to <u>linear velocity</u> in linear motion
<u>Explanation:</u>
We define angular velocity ω as the rate of change of an angle. The greater the rotation angle in a given amount of time, the greater the angular velocity. angular velocity refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time.
The units for angular velocity are radians per second (rad/s). Angular velocity ω is analogous to linear velocity v. Linear velocity is the measure of “the rate of change of displacement with respect to time when the object moves along a straight path.” It is a vector quantity.