Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L = 
<h3>0.120M is the concentration of the solution</h3>
 
        
             
        
        
        
The answer is A
According to research I have done, pure solids and liquids are not included in the equilibrium constant expression. If the concentration of a reactant in aqueous solution is increased, the position of equilibrium will move in the direction which minimises the effect of this increase in concentration, by using the added component up, to decrese it's concentration again.
        
             
        
        
        
<span>Answer: B. Ionic solids have higher melting points than molecular solids.
</span>
This is because the rest are false, as solids are able to melt, and do have melting points. Also, not all solids have the same melting points. 
        
             
        
        
        
Answer:

Explanation:

From the question, one can work out which states of matter to assign to which species. The trick with organic equations of this nature is to try to balance everything but oxygen first. Make sure you balance oxygen last because it is the easiest to balance.