Answer:
N- 1s2 2s2 2p3
Mg- 1s2 2s2 2p6 3s2
O- 1s2 2s2 2p4
F- 1s2 2s2 2p5
Al-1s2 2s2 2p6 3s2 3p1
Explanation:
Order of decreasing atomic radius
Mg,Al, N,O,F
Order of increasing ionization energy
Mg,Al, N,O,F
Reason:
Atomic radius decreases with increase in nonmetallic character. Looking at the electronic configurations, as effective nuclear charge increases, the atom becomes smaller and the attractive force between the nucleus and the outermost electrons increases. Hence, the radius of the atom decreases and ionization energy increases. Note that the addition of more orbital electrons implies addition of more nuclear charge since the both must exactly balance for the atom to remain electrically neutral. The more the electrons in the outermost shell, the higher the first ionization energy.
Explanation:
you look like a mohammed. im good, hbu?
Answer:
Following are the solution to this question:
Explanation:
Please find the complete question in the attachment.
Start of Laboratory
Dissolve 2-naphthol in the round bottom flask with ethanol.
Add pellets of sodium hydroxide and hot chips. Attach a condenser.
Heat for 20 minutes under reflux, until the put a burden dissolves.
After an additional hour, add 1-Bromobutane and reflux.
Pour the contents into a beaker with ice from a round bottom flask.
On a Bachner funnel, absorb the supernatant by vacuum filtration.
Utilizing cold water to rinse the material and dry that on the filter.
Ending of the Lab
Answer:

Explanation:
Hello,
In this case, we need to remember that for the required time for a radioactive nuclide as radium-226 to decrease to one half its initial amount we are talking about its half-life. Furthermore, the amount of remaining radioactive material as a function of the half-lives is computed as follows:

Therefore, for an initial amount of 100 mg with a half-life of 1590 years, after 1000 years, we have:

Best regards.