Answer:
Explanation: Speed = Wavelength x Wave Frequency. In this equation, wavelength is measured in meters and frequency is measured in hertz (Hz), .
Answer:
v<em>min</em> = 0.23 m/s
Explanation:
The golf ball must travel a distance equal to its diameter in the time between blade arrivals to avoid being hit. If there are 12 blades and 12 blade openings and they have the same width, then each blade or opening is 1/24 of a circle of is 2π/24 = 0.26 radians across.
Therefore, the time between the edge of one blade moving out of the way and the next blade moving in the way is
time = angular distance/angular velocity
⇒ t = 0.26 rad / 1.35 rad/s = 0.194 s
The golf ball must get completely through the blade path in this time, so must move a distance equal to its diameter in 0.194 s, therefore the speed of the golf ball is
v =d/t
⇒ v = 0.045 m / 0.194 s = 0.23 m/s
The answer is <span>C. 49 m/s
The kinetic equation is:
v2 = v1 + a * t
v1 - initial velocity
v2 - final velocity
a - gravitational acceleration
t - time
We know:
v2 = ?
v1 = 0 (in free fall
a = 9.8 m/s
t = 5
</span>v2 = v1 + a * t
v2 = 0 + 9.8 * 5
v2 = 0 + 49
v2 = 49 m/s
Using the principle of floatation.
u = w............(a)
Upthrust of fluid is equal to the weight of the object.
Let the volume of the wood be V.
The upthrust u, is related to the volume submerged in water, and that is 1/5 of it volume, that is (1/5)V = 0.2V
Formula for upthrust, u = vdg
where v = volume of fluid displaced
d = density of fluid
g = acceleration due to gravity
weight, w = mg
where m = mass
g = acceleration due to gravity
From (a)
u = w
vdg = mg Cancel out g
vd = m
The v is equal to 0.2V, which is the submerged volume. Notice that the small letter v is volume of fluid displaced, and capital V is the volume of the solid.
d is density of fluid which is water in this case, 1000 kg/m³
0.2V * 1000 = m
200V = m
Hence the mass of the object is 200V kg.
But Density of solid = Mass of solid / Volume of solid
= 200V / V
= 200 kg/m³
Density of solid = 200 kg/m³
Your weight pushing down on the chair is the action force. The reaction force is the force exerted by the chair that pushes up on your body.