Answer:
α = 0
, w = w₀
Explanation:
Torque is related to angular acceleration by Newton's second law for rotational motion.
τ = I α
Where τ is the torque, I the moment of inertia and α the angular acceleration.
If we apply an external torque for the sum of all torques to be zero, the angular acceleration must fall to zero
α = 0
Since the acceleration is zero, the angular velocity you have at that time is constantly killed.
w = w₀ + α t
w = w₀ + 0
We have the equation of motion
, where v is the final velocity, u is the initial velocity, a is the acceleration and s is the displacement.
In this case initial velocity = 2.20 m/s, final velocity = 0 m/s, displacement = 14 m
On substitution we will get 0 = 
On solving we can find the acceleration value as -0.173
So free fall acceleration = 0.173
Please find the attached photo for your answer. Hope it helps..
The acceleration of the object if the net force is decreased = 0.13 m/s²
<h3>Further explanation</h3>
Given
A net force of 0.8 N acting on a 1.5-kg mass.
The net force is decreased to 0.2 N
Required
The acceleration of the object if the net force is decreased
Solution
Newton's 2nd law :

The mass used in state 1 and 2 remains the same, at 1.5 kg
ΣF=0.8 N
m=1.5 kg
The acceleration, a:

ΣF=0.2 N
m=1.5 kg
The acceleration, a:
