Answer : The concentration of HI (g) at equilibrium is, 0.643 M
Explanation :
The given chemical reaction is:

Initial conc. 0.10 0.10 0.50
At eqm. (0.10-x) (0.10-x) (0.50+2x)
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.0713 and x = 0.134
We are neglecting value of x = 0.134 because the equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.0713
The concentration of HI (g) at equilibrium = (0.50+2x) = [0.50+2(0.0713)] = 0.643 M
Thus, the concentration of HI (g) at equilibrium is, 0.643 M
Bleach is a common disinfectant used in laboratory settings.
mercury is a planet.
Answer:
[OH-] = 6.17 *10^-10
Explanation:
Step 1: Data given
pOH = 9.21
Step 2: Calculate [OH-]
pOH = -log [OH-] = 9.21
[OH-] = 10^-9.21
[OH-] = 6.17 *10^-10
Step 3: Check if it's correct
pOH + pH = 14
[H+]*[OH-] = 10^-14
pH = 14 - 9.21 = 4.79
[H+] = 10^-4.79
[H+] = 1.62 *10^-5
6.17 * 10^-10 * 1.62 * 10^-5 = 1* 10^-14
Answer:
its actually experimental this time
Explanation:
sorry bout the last one i just wanna help:(
The Constitution provides the basic structure for US Government.
As a sidenote, you posted this in Chemistry, when it actually belongs in another topic. Please be sure to post questions only where they belong. Thanks! :)