1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
3 years ago
10

If you move 50 meters in 10 seconds, what is your speed ​

Physics
1 answer:
iogann1982 [59]3 years ago
8 0

Explanation:

My answer didn't save :(

You might be interested in
A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
shusha [124]

Answer:

a)   a = - 0.0833 m / s²,  b)   t = 4.4 s

Explanation:

a) this is a kinematics exercise where the acceleration is along the inclined plane

         v = v₀ - a t

         a = v₀ - v / t

         a = 3 - 8/60

         a = - 0.0833 m / s²

b) in this case the final velocity is zero

         v = v₀ - a t

         0 = v₀ - at

         t = v₀ / a

         t = 28 / 6.4

         t = 4.375 s

         t = 4.4 s

3 0
3 years ago
A car is cruising at a steady speed of 35 mph. Suddenly, a cuddly puppy runs out into the road. The driver takes 1.7 seconds to
Schach [20]

Answer:

The distance traveled is 0.037 mi

Explanation:

The equation for the position and velocity of an accelerated object is:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a * t

where

x = position at time t

x0 = initial position

t = time

a = acceleration

v0 = initial velocity

If the velocity is constant, then a = 0 and the position will be:

x = x0 + v * t where "v" is the velocity

First, let´s find the distance traveled until the driver push the brake:

The speed is constant. Then:

x = x0 + v * t (considering the origin of the reference system to be located at the point at which the driver sees the puppy, x0 = 0)

x = 35 mi/h (1 h / 3600 s) * 1.7 s = 0.017 mi

Then, the drivers moves with constant acceleration until the car stops (v = 0)

From the equation for velocity:

v = v0 + a * t

Since v = 0, we can obtain the acceleration of the car until it stops. With that acceleration, we can calculate how much distance the car moves before it stops.

0 = v0 + a * t

-v0 / t = a

-35 mi/h (1 h / 3600s) / 4.0 s = a

a = -2.4 x 10⁻³ mi/s²

The distance traveled will be:

x = x0 + v0 * t + 1/2 * a * t²

Now x0 will be the distance traveled before the driver slows down.

x = 0.017 mi + 35 mi/h (1 h / 3600s) * 4 s + 1/2 * ( -2.4 x 10⁻³ mi/s²) * (4s)²

x = 0.037 mi

6 0
3 years ago
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal equilibrium at 10
Alexeev081 [22]

Answer:

a) c=1822.3214\ J.kg^{-1}.K^{-1}

b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c) The material is peat, possibly.

d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.

Explanation:

Given:

  • mass of aluminium, m_a=0.1\ kg
  • mass of water, m_w=0.25\ kg
  • initial temperature of the system, T_i=10^{\circ}C
  • mass of copper block, m_c=0.1\ kg
  • temperature of copper block, T_c=50^{\circ}C
  • mass of the other block, m=0.07\ kg
  • temperature of the other block, T=100^{\circ}C
  • final equilibrium temperature, T_f=20^{\circ}C

We have,

specific heat of aluminium, c_a=910\ J.kg^{-1}.K^{-1}

specific heat of copper, c_c=390\ J.kg^{-1}.K^{-1}

specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}

Using the heat energy conservation equation.

The heat absorbed by the system of the calorie-meter to reach the final temperature.

Q_{in}=m_a.c_a.(T_f-T_i)+m_w.c_w.(T_f-T_i)

Q_{in}=0.1\times 910\times (20-10)+0.25\times 4186\times (20-10)

Q_{in}=11375\ J

The heat released by the blocks when dipped into water:

Q_{out}=m_c.c_c.(T_c-T_f)+m.c.(T-T_f)

where

c= specific heat of the unknown material

For the conservation of energy : Q_{in}=Q_{out}

so,

11375=0.1\times 390\times (50-20)+0.07\times c\times (100-20)

c=1822.3214\ J.kg^{-1}.K^{-1}

b)

This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c)

The material is peat, possibly.

d)

The material cannot be ice because ice doesn't exists at a temperature of 100°C.

7 0
3 years ago
What is the primary determinant of the voltage developed by a battery?
Fittoniya [83]
For the answer to the question above asking what is the primary determinant of the voltage developed by a battery?the answer is that the <span>the nature of the materials in the reaction that is the primary determinant of the voltage from a battery.</span>
5 0
3 years ago
A 2kg hockey puck is sliding across the ice skating rink at 2 m/s. A player hits the puck so it's velocity increases to 10 m/s.
konstantin123 [22]

The work done on the puck is 96 J

Explanation:

According to the work-energy theorem, the work done on the hockey puck is equal to the change in kinetic energy of the puck.

Mathematically:

W=K_f -K_i= \frac{1}{2}mv^2-\frac{1}{2}mu^2

where

K_f = \frac{1}{2}mv^2 is the final kinetic energy of the puck, with

m = 2 kg being the mass of the puck

v = 10 m/s is the final speed

K_i = \frac{1}{2}mu^2 is the initial kinetic energy of the puck, with

u = 2 m/s being the initial speed of the puck

Substituting numbers into the equation, we find the work done by the player on the puck:

W=\frac{1}{2}(2)(10)^2 - \frac{1}{2}(2)(2)^2=96 J

Learn more about work and kinetic energy:

brainly.com/question/6763771  

brainly.com/question/6443626  

brainly.com/question/6536722

#LearnwithBrainly

6 0
3 years ago
Other questions:
  • What is the circle of least confusion?
    13·1 answer
  • To understand the formula representing a traveling electromagnetic wave. Light, radiant heat (infrared radiation), X rays, and r
    9·1 answer
  • Which physical change in which gas directly to a solid is​
    15·1 answer
  • 009 10.0 points
    6·2 answers
  • A tradesman sharpens a knife by pushing it with a constant force against the rim of a grindstone. The 30-cm-diameter stone is sp
    13·1 answer
  • Identical particles, each with energy E, are incident on the following four potential energy
    12·1 answer
  • Speedy Sue, driving at 30.0 m/s, enters a one lane tunnel. She then observes a slow moving van 155 m ahead traveling at 5.00 m/s
    13·1 answer
  • 11. A candle is placed in front of a plane mirror. The calculated value of m,
    10·1 answer
  • Use the excerpts and your knowledge of social studies to answer the question.
    11·2 answers
  • What force is required to move 7 M if the work done is 9 J
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!