Answer:
27.95[kW*min]
Explanation:
We must remember that the power can be determined by the product of the current by the voltage.

where:
P = power [W]
V = voltage [volt]
I = amperage [Amp]
Now replacing:
![P=110*8.47\\P=931.7[W]](https://tex.z-dn.net/?f=P%3D110%2A8.47%5C%5CP%3D931.7%5BW%5D)
Now the energy consumed can be obtained mediate the multiplication of the power by the amount of time in operation, we must obtain an amount in Kw per hour [kW-min]
![Energy = 931.7[kW]*30[days]*10[\frac{min}{1day} ]=279510[W*min]or 27.95[kW*min]](https://tex.z-dn.net/?f=Energy%20%3D%20931.7%5BkW%5D%2A30%5Bdays%5D%2A10%5B%5Cfrac%7Bmin%7D%7B1day%7D%20%5D%3D279510%5BW%2Amin%5Dor%2027.95%5BkW%2Amin%5D)
Potential Energy = mass x gravitational acceleration x height
potential Energy = 1 x 9.8 x 10 = 98 joules
Answer:
Newton's third law of motion states that whenever a first object exerts a force on a second object, the first object experiences a force equal in magnitude but opposite in direction to the force that it exerts. ... Newton's third law is useful for figuring out which forces are external to a system.
Explanation:
is these what you're looking for?
B.) <span>The amp is the unit for "Current"
Hope this helps!</span>