Explanation:
Draw a free body diagram for each disc.
Disc A has three forces acting on it: 86.5 N up, T₁ down, and Wa down.
∑F = ma
86.5 N − T₁ − Wa = 0
Wa = 86.5 N − T₁
ma × 9.8 m/s² = 86.5 N − 55.6 N
ma = 3.2 kg
Disc B has three forces acting on it: T₁ up, T₂ down, and Wb down.
∑F = ma
T₁ − T₂ − Wb = 0
Wb = T₁ − T₂
mb × 9.8 m/s² = 55.6 N − 36.5 N
mb = 1.9 kg
Disc C has three forces acting on it: T₂ up, T₃ down, and Wc down.
∑F = ma
T₂ − T₃ − Wc = 0
Wc = T₂ − T₃
mc × 9.8 m/s² = 36.5 N − 9.6 N
mc = 2.7 kg
Disc D has two forces acting on it: T₃ up and Wd down.
∑F = ma
T₃ − Wd = 0
Wd = T₃
md × 9.8 m/s² = 9.6 N
md = 0.98 kg
Answer:
a) their potential energy increases.
Explanation:
Ohm's Law is
R= V/I
Where R= Resistance
V= potential difference or potential energy
I= current or conduction electron flow rate
Clearly R and V are directly proportional i-e Potential energy increases with resistance.
Answer : The static friction depends on two factors
1. Roughness of the surface
2. Force
Explanation : Friction occur when surface is not smooth.
The formula of friction is

Static friction depends on the roughness of the surface and force which is trying to push to object along the surface.
Static friction is caused by the attraction between two surfaces that are in contact. when the surface will rough and the object will heavier then the force will be larger.
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N