You are at rest with respect to the car.
You are in motion with respect to the School.
Answer:
a)W=8.333lbf.ft
b)W=0.0107 Btu.
Explanation:
<u>Complete question</u>
The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.
Solution
Preload = F₀=0 lbf
Spring constant k= 200 lbf/in
Initial length of spring x₁=0
Final length of spring x₂= 1 in
At any point, the force during deflection of a spring is given by;
F= F₀× kx where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

Change to lbf.ft by dividing the value by 12 because 1ft=12 in
100/12 = 8.333 lbf.ft
work required to compress the spring, W=8.333lbf.ft
The work required to compress the spring in Btu will be;
1 Btu= 778 lbf.ft
?= 8.333 lbf.ft----------------cross multiply
(8.333*1)/ 778 =0.0107 Btu.
Answer:
Explained below
Explanation:
1) The human arm: This is a type of simple machine called "Lever". In this type of machine, the elbow acts as the fulcrum, the palm serves as the load because that's where we place the load we want to carry. While the inner part of the arm which is the inner part of the elbow represents the effort because that is the joint we mover when making use of our arms.
2) Pulleys: An example of this in the human body is the knee cap where the direction of an applied force is changed. Thus means as it is in motion, it alters the direction for which the quadriceps tendon pulls on the tibia.
3) wheel and axle: An example of this in the human body is the lateral rotation of the shoulder joint medial. The humerus which is the bone between the shoulder and elbow will act as the axle while the rotator will be the will because when it is rotated a little bit, the humerus will move along with it.
Answer: the magnetic wave will travel out of the screen.
Explanation:
Electric field direction is perpendicular to the magnetic field direction. Both are also perpendicular to the direction of the particles.
Using right hand rule to solve this problem,
This pointed finger depicts the electric field direction which the curly fingers depict the direction of the magnetic field. The pointed thumb will depict the direction in which the wave travel. Which is out of the screen.
Carbon-14 has a relatively small half life of 5,730 years