The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of
increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
53.895 m.
Explanation:
Using the equation of motion,
v² = u² + 2as .............. Equation 1
Where v = final velocity of the swan, u = initial velocity of the swan, a = acceleration of the swan, s = distance covered by the swan.
make s the subject of the equation,
s = (v² - u²)/2a----------- Equation 2
Given: v = 6.4 m/s, u = 0 m/s ( from rest) a = 0.380 m/s².
Substitute into equation 2
s = (6.4²-0²)/(2×0.380)
s = 40.96/0.76
s = 53.895 m.
Hence the swan will travel 53.895 m before becoming airborne.
Answer:

Explanation:
One mole of a substance contains the same amount of representative particles. These particles can be atoms, molecules, ions, or formula units. In this case, the particles are atoms of titanium.
Regardless of the particles, there will always be <u>6.02*10²³</u> (also known as Avogadro's Number) particles in one mole of a substance.
Therefore, the best answer for 1 mole of titanium is D. 6.02*10²³ atoms.
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s