<h3><u>Answer;</u></h3>
C) A convex lens has a thick center and thin edges; a concave lens has a thin center and thicker edges.
<h3><u>Explanation;</u></h3>
- Convex lens refers to the lens which merges the light rays at a particular point, that travels through it, while a concave lens can be identified as the lens which disperses the light rays around, that hits the lenses.
- A convex lens is thicker at the center, as compared to its edges, while a concave lens is thinner at the center as compared to its edges.
- A concave lens is thicker at the edges than in the middle and spreads light rays apart producing an image smaller than the actual object. A convex lens on the other hand, is thinner at the edges and thicker towards the center, that is they are bent towards a central point.
Earlier species thanks to evolution. hope this helped!
molarity of a solution means mols per liter.
First, you need to convert 23 grams on NaCl into mols. 23g divided by molar mass (58.44g/mol) which gives you .394 mols.
Now, you need to convert 500ml to L which moves the decimal three places to the left, giving you .500L of solution.
Finally, divide the mols over solution to get .787M
The answer is- The energy of 1 L water at temperature 347.78 °C have more energy as 1 L of water at temperature 65°C.
Heat is a type of energy that causes a person's body to feel hot or cold.
While the temperature of an object is a parameter that indicates how hot or cold the object is.
How is the temperature in degree Fahrenheit converted to degree celsius?
- To convert the temperature in Fahrenheit to Celsius, subtract 32 and multiply by 5/9.
°
- Now, heat is a form of energy that flows from hotter object to colder object and temperature indicates whether the object is hot or cold by measuring its average kinetic energy.
- Now, the given temperature of 1 L water is 658 °F. This temperature in degree celsius is calculated as-
°C 
- Now, higher the temperature, higher is the energy of water. Thus, the energy of 1 L water at 347.78 °C have more energy as 1 L of water at 65°C.
To learn more about heat and temperature, visit:
brainly.com/question/20038450
#SPJ4