There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
Randall has unconscious assumption that attractive people are more competent
The mass of an object on Earth is the same as its mass on the Moon. The weight is different.
Weight = m * g
Weight ( Moon ) = 40 kg * 1.6 m/s² = 64 N
If the mass of an object on Earth is 40 kg, its mass on the Moon is 40 kg and its weight on the Moon is 64 N.
Answer:
Explanation:
Let the angle between the first polariser and the second polariser axis is θ.
By using of law of Malus
(a)
Let the intensity of light coming out from the first polariser is I'
.... (1)
Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.
By the law of Malus

So,



(b)
Now differentiate with respect to θ.


Answer:
20 m/s
30 m/s
Explanation:
Given:
v₀ = -10 m/s
a = -9.8 m/s²
When t = 1 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (1 s)
v = -19.8 m/s
When t = 2 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (2 s)
v = -29.6 m/s
Rounded to one significant figures, the speed of the ball at 1 s and 2 s is 20 m/s and 30 m/s, respectively.