1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
14

If the third charge (–| q 3 |) is placed at point P, but not held fixed, it will experience a force and accelerate away from the

other two charges. If q3 = q = –1.0 nC, the mass of the third charge m3 is 5.0 x 10-12 kg, and s = 4.0 cm, what will the speed of charged particle #3 [in m/s] be after it has moved a very large distance away?

Physics
1 answer:
Mazyrski [523]3 years ago
8 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

A

The potential of this system is  U=6.75*10^{-7}J

B

The electric potential at point p is V_p= -900V

C

The work required is  W= 9*10^{-7}J

D

The speed of the charge is  v=600m/s

Explanation:

A sketch to explain the question is shown on the second uploaded image

Generally the potential energy for a system of two charges is mathematically represented as

            U = \frac{kq_1 q_2}{d}

where k is the electrostatic constant with a value of  k = 9*10^9 N m^2 /C^2

           q is the charge with a value of  q = 1*10^{-9}C

           d is the distance given as   d =5m

Now we are given that  q_1 = q and  q_2 = 3q and

Now substituting values

             U = \frac{9*10^9 *1*10^{-9} * 3*10^{-9}}{5}

                U=6.75*10^{-7}J

The electric potential at point P is mathematically obtained with the formula

             V_p = V_{-q} + V_{-3q}

I.e the potential at q_1 plus the potential at  q_2

Now potential at q_1 is mathematically represented as

                   V_{-q} = \frac{-kq}{s}

and the potential at q_2 is mathematically represented as

                        V_{-3q} = \frac{-3kq}{s}

Now substituting into formula for potential at  P

                  V_p = \frac{-kq}{s} + \frac{-3kq}{s}  = -\frac{4kq}{s}

                       = \frac{4*9*10^9 *1*10^{-9}}{4*10^{-2}}

                      V_p= -900V

The Workdone to bring the third negative charge is mathematically evaluated as

                W =\Delta U = \frac{kq_1q_3}{s} + \frac{kq_2q_3}{s}

                                 = \frac{kq*q}{s} +   \frac{kq*3q}{s}

                                = \frac{4kq^2}{s}

                               = \frac{4* 9*10^9 * (1*10^{-9})^2}{4*10^{-2}}

                              W= 9*10^{-7}J

From the Question are told that the charge q_3 would a force and an acceleration which implies that all its potential energy would be converted to kinetic energy.This can be mathematically  represented as

                   \Delta U = W = \frac{1}{2} m_{q_3} v^2

                         9*10^{-7} = \frac{1}{2} m_{q_3} v^2

Where m_{q_3} = 5.0*10^{-12}kg

Now making v the subject we have

                 v = \sqrt{\frac{9*10^{-12}}{5*10^{-12}*0.5} }

                     v=600m/s  

You might be interested in
Andrea's near point is 20.0 cm and her far point is 2.0 m. Her contact lenses are designed so that she can see objects that are
Shalnov [3]

Answer:

the closest distance that she can see an object clearly when she wears her contacts is 22.2 cm

Explanation:

Given the data in the question,

near point = 20 cm

far point = 2 m = 200 cm

Now, for an object that is infinitely far away, the image is at is its far point.

so using the following expression, we can determine the focal length

1/f = 1/i + 1/o

where f is the focal length, i is the image distance and o is the object distance.

here, far point i = 2 m = 200 cm  and v is ∞

so we substitute

1/f = 1/(-200 cm)  +  1/∞

f = -200 cm

Also, for object at its closest point, the image appear at near point,

so

1/f = 1/i + 1/o

we make o the subject of formula

o = ( i × f ) / ( i - f )

given that near point i = 20 cm

we substitute

o = ( -20 × -200 ) / ( -20 - (-200) )

o = 4000 / 180

o = 22.2 cm

Therefore, the closest distance that she can see an object clearly when she wears her contacts is 22.2 cm

4 0
3 years ago
20 POINTS!
CaHeK987 [17]
Potential energy is the answer
6 0
3 years ago
Two objects are moving at equal speed along a level, frictionless surface. the second object has twice the mass of the first obj
lbvjy [14]

Answer:

They both rises to same height.

Explanation:

When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

mgH=\frac{1}{2}mv^{2}\\ v=\sqrt{2gH}

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.

Here the height is independent on the mass of an object and its only depend on velocity.

Now according to the question, two objects have same velocity but they have different masses.

Therefore, they rises to the same height because  height will not change with mass.

8 0
3 years ago
Read 2 more answers
The joule (J) is a unit of energy. Recall that energy may be converted between many different forms such as mechanical energy, t
REY [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The workdone is  W = -177.275J

Explanation:

From the question we are told that

      The initial Volume is  Vi = 0.160 L

      The final volume is  V_f = 0.510L

      The external pressure is  P = 5.00 \ atm

Generally the change in volume is

           \Delta V = V_f - V_i

Substituting values we have

           \Delta V = 0.510 -0.160

                 = 0.350L

Generally workdone is mathematically represented as

           W = -P \Delta V

W is negative because the working is done on the environment by the system which is indicated by volume increase

     Substituting values

                W = - 5* 0.350

                    = -1.75 \ L \ \cdot atm

Now  1 \  L \cdot atm = 101.3J

  Therefore  W = -1.75* 101.3

                          = -177.275J

   

7 0
2 years ago
Read 2 more answers
A linear accelerator uses alternating electric fields to accelerate electrons to close to the speed of light. A small number of
kobusy [5.1K]

Answer:

8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.

Explanation:

The total charge accumulated in 1.8 hours will be:

Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)

Total Charge = - 12960 nC = - 12.96 x 10^(-6) C

Since, the charge on one electron is e = - 1.6 x 10^(-19) C

Therefore, no. of electrons will be:

No. of electrons = Total Charge/Charge on one electron

No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]

<u>No. of electrons = 8.1 x 10^13 electrons</u>

6 0
3 years ago
Other questions:
  • A 49 kg pole vaulter running at 10 m/s vaults over the bar. Her speed when she is above the bar is 0.7 m/s. The acceleration of
    7·1 answer
  • You want to prevent charges from moving off of a charged metal sphere.
    15·2 answers
  • How can you use energy conversation to predict the speed of the marble from the height?
    11·1 answer
  • You have a chart that illustrates a series of species with their common ancestor. This chart is a
    10·1 answer
  • A model air rocket with a mass of 50.g is free to travel along a horizontal track. It begins from rest. After 2.0s, the rocket h
    10·1 answer
  • A merry-go-round on a playground consists of a horizontal solid disk with a weight of 805 N and a radius of 1.47 m. A child appl
    12·1 answer
  • An element consists of two isotopes. The abundance of one isotope is 60.40% and its atomic mass is 68.9257 u. The atomic mass of
    15·2 answers
  • Consider four point charges arranged in a square with sides of length L. Three of the point charges have charge q and one of the
    12·1 answer
  • Label each statement 1 2 or 3 for the law of motion it illudtrates​
    14·1 answer
  • Solve for x and y algebraically:<br>x + y = 8 and 3x + 2y = 21​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!