Answer:
Below see details
Explanation:
A) It is attached. Please see the picture
B) First to calculate the overall mean,
μ=65∗25/75+80∗25/75+95∗25/75
μ=65∗25/75+80∗25/75+95∗25/75 = 80
Next to calculate E(MSTR) = σ2+(1/r−1) ∑ni(μi−μ)^2 = 5634
And E(MSE) = σ^2= 9
C) Yes, it is substantially large than E(MSE) in this case.
D) If we sampled 25 employees from each group, we are likely to get a F statistics to indicate differences of job satisfactions among three types of length of service of employees.
Answer:
Decreased risk of structure failure
Answer:
15.8
0.0944
Explanation:
L = 1.5
B = 1.0
Speed of water = 15cm
Temperature = 20⁰C
At 20⁰C
Specific weight = 9790
Kinematic viscosity v = 1.00x10^-4m²/s
Dynamic viscosity u = 1.00x10^-3
Density p = 998kg/m²
Reynolds number
= 0.15x1.5/1.00x10^-4
= 225000
S = 5
5x1.5/225000^1/2
= 0.0158
= 15.8mm
Resistance on one side of plate
F = 0.664x1x1.0x10^-3x0.15x225000^1/2
= 0.04724N
Total resistance
= 2N
= 2x0.04724
= 0.0944N
Answer:

Explanation:
The Young's module is:


Let assume that both specimens have the same geometry and load rate. Then:

The displacement rate for steel is:


