Answer:
When a body moves in a circle with constant speed , it is said to be in uniform circular motion .
Explanation:
- When an object moves in a circular path , its direction changes at each point .
- This change in direction result in change of velocity (velocity is vector quantity which changes if direction of the object change) .However speed do not change (it is scalar quantity , not affected by Direction)
- The Change in velocity produce acceleration ( a = v - u)
- Hence The object always produce acceleration in uniform circular motion .So, Some force (centripetal force) is needed to keep the object in circular motion.
Zinc is no longer the positive electrode because copper has a more positive (higher) value than zinc (anode). The anode value is reduced by the potential of the other electrode.
<h3>In a galvanic cell, is the anode positive or negative?</h3>
In a galvanic (voltaic) cell, the cathode is regarded as positive and the anode as negative. This seems reasonable given that the cathode is where electrons flow from the anode, which is where they originate.
<h3>What is a galvanic cell?</h3>
An electrochemical cell called a galvanic cell or voltaic cell, respectively named after the scientists Luigi Galvani and Alessandro Volta produces an electric current by spontaneous oxidation-reduction reactions. A typical device typically consists of two distinct metals that are submerged in separate beakers that each contains their own metal ions in solution and are either connected by a salt bridge or divided by a porous membrane.
Learn more about Galvanic cells here:-
brainly.com/question/13927063
#SPJ4
The opposite type of reaction (where energy is taken in from the surroundings of a reaction and thus the energy of the reactants is lower than that of the products) is called an endothermic reaction
When the products of a reaction are hotter than the reactants, an exothermic reaction is happening. An exothermic reaction is a reaction that releases energy to the surroundings. The energy released should be more than what is absorbed in order to maintain the reaction.