Answer:
23376 days
Explanation:
The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

where k is a constant.
From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

Let the orbital period of the earth be
and its mean distance of from the sun be
.
Also let the orbital period of the planet be
and its mean distance from the sun be
.
Equation (2) therefore implies the following;

We make the period of the planet
the subject of formula as follows;

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

Substituting equation (5) into (4), we obtain the following;

cancels out and we are left with the following;

Recall that the orbital period of the earth is about 365.25 days, hence;

Answer:
1. A <em>series circuit </em>is a closed circuit which has all loads connected in a row and there is only one path for the current to flow.
2. The <em>Ohm's Law </em>state that a current flow through a resistor is directly proportional to the voltage across it 
3. A <em>parallel circuit </em>is a closed circuit divided into branches that it has two o more paths for the current to flow and the loads are parallel to each other which mean the voltage across them is the same for all loads.
Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°
Is the variable you change, independent, I, something I change.