1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nana76 [90]
2 years ago
5

2. Stars normally convert hydrogen into helium through nuclear fusion. That requires incredibly hot temperatures and high pressu

re. At the moment, the temperature of empty space is nowhere near warm enough to fuse any elements together. What type of temperature and pressure conditions needed to be present in the early universe in order to create the first hydrogen atoms
Physics
1 answer:
jolli1 [7]2 years ago
6 0

Answer:

About 4,000 K and 10⁻¹⁷ atm

Explanation:

The Big Bang theory states that the Big Bang which is the origin of the universe was about 13.75 billion years ago, and the temperature a few seconds later was 10³²K

The first element began forming at about 3 minutes after the Big Bang with a temperature of 10⁹ K, the nuclei of simple elements

The nuclei of hydrogen and helium began combine with electrons at a temperature of 3,000 K to 4,000 K to form the first neutral atoms. The pressure of the universe at that stage was 10⁻¹⁷ atmospheres

You might be interested in
A stone is thrown vertically upward with a speed of 18.0 . (a)How fast is it moving when it reaches a height of 11.0 ? (b)How lo
aliina [53]
For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative. 
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct. 

For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
 </span> 
5 0
2 years ago
A certain 100W light bulb has an efficiency of 95%. How much thermal energy will this light bulb add to the inside of a room in
Usimov [2.4K]
Since the bulb consumes 100 watts of power and its efficiency is 95%,
it generates 95 watts of light energy and 5 watts of heat energy whenever
it's turned on.

5 watts means  5 joules of energy per second.

(2.5 hours) x (3,600 seconds/hour) =  9,000 seconds

(9,000 seconds) x (5 joules/second)  =  45,000 joules of heat in 2.5 hours

7 0
3 years ago
A thermometer is removed from a room where the temperature is 70° F and is taken outside, where the air temperature is 10° F. Af
vekshin1

Answer:

T=51.64^\circ F

t=180.10s

Explanation:

The Newton's law in this case is:

T(t)=T_m+Ce^{kt}

Here, T_m is the air temperture, C and k are constants.

We have

70^\circ F in t=0

So:

T(0)=70^\circ F\\T(0)=10^\circ F+Ce^{k(0)}\\70^\circ F=10^\circ F+C\\C=70^\circ F-10^\circ F=60^\circ F

And we have 60^\circ F in t=30 s, So:

T(30)=60^\circ F\\T(30)=10^\circ F+(60^\circ F)e^{k(30)}\\60^\circ F=10^\circ F+(60^\circ F)e^{k(30)}\\50^\circ F=(60^\circ F)e^{k(30)}\\e^{k(30)}=\frac{50^\circ F}{60^\circ F}\\(30)k=ln(\frac{50}{60})\\k=\frac{ln(\frac{50}{60})}{30}=-0.0061

Now, we have:

T=10^\circ F+(60^\circ F)e^{-0.0061t}(1)

Applying (1) for t=1 min=60s:

T=10^\circ F+(60^\circ F)e^{-0.0061*60}\\T=10^\circ F+(60^\circ F)0.694\\T=10^\circ F+41.64^\circ F\\T=51.64^\circ F

Applying (1) for T=30^\circ F:

30^\circ F=10^\circ F+(60^\circ F)e^{-0.0061t}\\30^\circ F-10^\circ F=(60^\circ F)e^{-0.0061t}\\-0.0061t=ln(\frac{20}{60})\\t=\frac{ln(\frac{20}{60})}{-0.0061}=180.10s

8 0
3 years ago
How does brainy work
balandron [24]
You have to get points to asked a question and then you can help people to get points and it you want to have friends send them inventions but it you don't have no points you can't asked quenstions
8 0
3 years ago
Read 2 more answers
ANSWERS UNDER QUESTIONS:
Julli [10]
<h2>Answers:</h2><h2 /><h2>a) Arrow B</h2><h2>b) Arrow E</h2>

Explanation:

Refraction is a phenomenon in which a wave (the light in this case) bends or changes its direction <u>when passing through a medium with a refractive index different from the other medium.</u>  Where the Refractive index is a number that describes how fast light propagates through a medium or material.  

According to this, if we observe the rays  A an D passing throgh the biconcave lens, we will have two mediums:

1) The air

2)The material of the biconcave lens

This two mediums have different refractive indexes, hence the rays will change the direction.

-For the incident ray A, the corresponding refractive ray is B, because is the ray that bends after passing throgh the lens

-For the incident ray D, the refracted ray is E following the same principle.

6 0
2 years ago
Read 2 more answers
Other questions:
  • Copper has a specific heat of 0.385 j. A piece of copper absorbs 5000 J of energy and undergoes a temperature change from 100 Ce
    14·1 answer
  • What is the mechanical advantage supplied by a 1000 N object lifted using 250 N of force
    6·1 answer
  • What are the characteristics and ph level of acids?
    9·1 answer
  • How can you double the frequency of a wave if you have control over both the wavelength and the wave velocity?
    5·2 answers
  • The Asteroid Belt exists between the orbits of _____ and _____.
    15·2 answers
  • I need help please. I’m between B or C and many responses have been B but I think that’s for if NO would be added and not SO3...
    9·1 answer
  • Which of the following is an example of kinetic energy being converted to potential energy? A. At an ice rink, an ice skater giv
    12·2 answers
  • A piece of glass with a flat surface is at the bottom of a tank of water. If a ray of light traveling in the glass is incident o
    10·1 answer
  • A red cart has a mass of 4 kg and a velocity of 5 m/s. There is a 2-kg blue cart that is parked and not moving, thus its velocit
    10·1 answer
  • Grade 8 Science Admin. May 2018 Released
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!