Answer:
a. 7.8*10¹⁴ He⁺⁺ nuclei/s
b. 4000s
c. 7.7*10⁸s
Explanation:
I = 0.250mA = 2.5 * 10⁻³A
Q = 1.0C
1 e- contains 1.60 * 10⁻¹⁹C
But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C
(A).
No. Of charge per second = current passing through / charge
1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C
1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei
(B).
I = Q / t
From this equation, we can determine the time it takes to transfer 1.0C
I = 1.0 / 2.5*10⁻⁴ = 4000s
(C).
Time it takes for 1 mol of He⁺⁺ to strike the target =?
Using Avogadro's ratio,
1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)
Note : ions cancel out leaving the value of the answer in mols.
1.0 mol of He = 7.7 * 10⁸s
CH is nonpolar
NH is polar
CCl is polar
SiO is polar
SCl is polar
CO is polar
OF is nonpolar
Remember that polarity results from unequal electron sharing
Answer:
Option D = No, when elements combine to form a new material, they have properties unique to the new materials.
Explanation:
When sodium contact with water it loses its one electron and thus gain positive charge. When there are more sodium atoms present and many atoms do this thus more positive ions are produced and these positive ions repeal each other at high speed and explosion occur.
But when it form compound with other material, it will not showed this behavior.
Example:
Consider the sodium chloride, when it dissolve in water sodium not showed explosion. In sodium chloride sodium already gives its electron to the chlorine and have stable electronic configuration. The sodium present in cationic form. When it dissolve, partial positive charge of water surrounds the Cl⁻ and partial negative charge of water surrounds the Na⁺ ion, ans sodium chloride gets dissolve into water without explosion.