Answer:
Rubidium Sulfide
Explanation:
The chemical name for Rb2S is Rubidium Sulfide
Weight of the balloon = 2.0 g
Six weights each of mass 30.0 g is added to the balloon.
Total mass of the balloon = 2.0 g + 6*30.0 g = 182 g
Density of salt water = 1.02 g/mL
Calculating the volume from mass and density:

Converting the volume from mL to cubic cm:

Assuming the balloon to be a sphere,
Volume of the sphere =
π

r = 3.49 cm
Radius of the balloon = 3.49 cm
Diameter of the balloon = 2 r = 2*3.49 cm = 6.98cm
Answer:

Explanation:
Hello,
In this case the undergoing chemical reaction is shown on the attached picture whereas cyclohexanol is converted into cyclohexene and water by the dehydrating effect of the sulfuric acid. Thus, for the starting 3 mL of cyclohexanol, the following stoichiometric proportional factor is applied in order to find the theoretical yield of cyclohexene in moles:

Besides, the mass could be computed as well by using the molar mass of cyclohexene:

Even thought, the volume could be also computed by using its density:

Best regards.
Answer: Potassium hydroxide, KOH, is considered a <u>BASE</u> in an acid-base reaction because it <u>ACCEPTS</u> a hydrogen ion from the other reactant.
According to Brønsted–Lowry acid–base theory, Base is a specie which accepts proton (H⁺) while, Acid is a specie which donate proton.
Bases may contain a negative charge or lone pair of electrons, while, Acids contain positive charge or a neutral atom with incomplete octet.
In given statement KOH is acting as a base because it contains a negatively charged hydroxyl group which can accept proton from a acid, i.e.
KOH → K⁺ + OH⁻
Reaction of OH⁻ with any acid,
K⁺ + OH⁻ + HCl → H₂O + KCl
This is true. Elements past lead are radioactive, because the repulsive force of the protons cannot be overpowered by the “gluing” ability of neutrons (remember, likes repel). As more and more protons are added, generally, the elements become more unstable; for example, Bismuth, right next to lead on the Periodic Table, is radioactive, but the half life of this element is about a billion times longer than the current age of the universe, but Oganesson, element number 118, has a half life of fractions of a second.