The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
Answer:
The minimum possible coefficient of static friction between the tires and the ground is 0.64.
Explanation:
if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :
Fc = f
m×(v^2)/(R) = μ×m×g
(v^2)/(R) = g×μ
μ = (v^2)/(R×g)
= ((25)^2)/((100)×(9.8))
= 0.64
Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.
Answer:
Explanation:
In a molecule, atoms are bonded together by single, double, or triple bonds. An atom has a nucleus surrounded by electrons. ... So another difference between atoms and molecules is that when similar atoms combine together in varying numbers, molecules of different properties can be formed.
50 miles east. because the 30 miles north then south cancel each other out.
1 volt = 1 joule per coulomb.
Current doesn't actually pass 'through' a battery.
But if it did, then each coulomb would gain or lose 6 joules in traversing 6 volts, depending on its sign, and whether it climbed or fell.