Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
Answer:
b. a large elliptical galaxy
Explanation:
In elliptical galaxies the stars are grouped in an elliptical shape, it has a low quantity of gas and dust in comparison to spiral galaxies, and its stars belong to an old population, there is not new stellar formation in it.
The stars orbit in a messy way which made to believe that they form from the merger of galaxies.
They are also really massive (around
solar masses).
The most massive and luminous can be found in the center of cluster of galaxies.
Answer:
326149.2 KJ
Explanation:
The heat transfer toward and object that suffered an increase in temperature can be calculated using the expression:
Q = m*cv*ΔT
Where m is the mass of the object, cv is the specific heat capacity at constant volume, which basically means the amount of heat necessary for a 1kg of water to increase 1C degree in temperatur, and ΔT is the change in temperature.
A 65000 L swimming pool will have a mass of:
65000L *
= 65000 kg
The specific heat capacity at constant volume of water is equal to 4.1814 KJ/KgC.
We replace the data and get:
Q = m*cv*ΔT = 65000 kg * 4.1814 KJ/KgC * 1.2°C = 326149.2 KJ