The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
a) 0.01 μF
b) 0.58 μF
c) 0.060 μF
d) 0.8 μF
Answer:
The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Explanation:
Please refer to the attached Figure 12-1 where three capacitors are connected in series.
We are asked to find out the equivalent capacitance of this circuit.
Recall that the equivalent capacitance in series is given by

Where C₁, C₂, and C₃ are the individual capacitance connected in series.
C₁ = 0.1 μF
C₂ = 0.22 μF
C₃ = 0.47 μF
So the equivalent capacitance is




Rounding off yields

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Answer and Explanation:
Let A denote its switch first after that we will assume B which denotes the next switch and then we will assume C stand for both the bulb. we assume 0 mean turn off while 1 mean turn on, too. The light is off, as both switches are in the same place. This may be illustrated with the below table of truth:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit is shown below
C = A'B + AB'
If the switches are in multiple places the bulb outcome will be on on the other hand if another switches are all in the same place, the result of the bulb will be off. This gate is XOR. The gate is shown in the diagram adjoining below.
Answer:
YES
Explanation:
If we connect batteries in series then the output voltage is the sum of the individual voltage of each battery i.e if you connect three 12 volts batteries in series then their output voltage will be 12+12+12=36 volts, but the current rating of the batteries in series will be same of the individual battery rating in 'mah'.
But when we connect the batteries in parallel their voltage is not added but their current rating in mah is addition of their individual rating.
So, If you want 24 volts from three 12 volts battery then you can connect two of them in series and the other one in parallel with them this will give 24 volts and the current will be addition of the two series batteries and the third which is in parallel with them. You can use this configuration if current value is not a big factor.