1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
6

What is trapezord mean

Physics
1 answer:
igor_vitrenko [27]3 years ago
5 0
A quadrilateral with only one pair of parallel sides.
<span>a small carpal bone in the base of the hand, articulating with the metacarpal of the index finger.
</span>
You might be interested in
magine two carts, one with twice the mass of the other, that are going to have a head-on collision. In order for the two carts t
scoray [572]

Answer:

Twice as fast

Explanation:

Solution:-

- The mass of less massive cart = m

- The mass of Massive cart = 2m

- The velocity of less massive cart = u

- The velocity of massive cart = v

- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.

- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.

- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

                             P_i = P_f

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

                             P_i = P_f = 0

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:

                             m*u - 2*m*v = 0

Where,

                 ( u ) and ( v ) are opposing velocity vectors in 1-dimension.

- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:

                          m*u = 2*m*v

                              u = 2*v

Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).

8 0
3 years ago
Select the correct answer. Which chemical reaction absorbs energy? A. photosynthesis B. explosion C. current produced by a batte
zavuch27 [327]

Answer:

Explanation:

Photosynthesis

4 0
3 years ago
Read 2 more answers
A tortoise and hare start from rest and have a race. As the race begins, both accelerate forward. The hare accelerates uniformly
Mnenie [13.5K]

Answer:

The acceleration of the hare once it begins to slow down is -0.68 m/s²

The acceleration of the tortoise is 0.28 m/s²

Explanation:

The equations that describe the position and velocity of the hare and the tortoise are the following:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x = position at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

v = velocity at time t

To find the acceleration of the hare once it begins to slow down, we have to find how much time the hare traveled during the deceleration and what was its initial speed.

First, the hare moves with constant acceleration for 4.7 s. Then, its velocity at  t = 4.7 s will be:

v = v0 + a · t    (v0 = 0 because the hare starts form rest)

v = a · t = 0.9 m/s² · 4.7 s = <u>4.2 m/s</u>

<u />

The distance traveled by the hare while accelerating can be calculated using the equation of the position:

x = x0 + v0 · t + 1/2 · a · t²      (x0 = 0 and v0 = 0)

x = 1/2 · a · t² = 1/2 · 0.9 m/s² · (4.7)² = <u>9.9 m</u>

<u />

Then, the hare runs at a constant speed of 4.2 m/s for 11.7 s. The distance traveled at constant speed will be:

x =  v · t

x = 4.2 m/s · 11.7 s = <u>49.1 m</u>

<u />

Then, the distance traveled by the hare while slowing down was:

Distance traveled while slowing down = 72 m - 49.1 m - 9.9 m = 13 m

Let´s find how much time it took the hare to come to stop, so we can calculate the acceleration. We know that when the position is 13 m, the velocity is 0.

v = v0 + a · t

0 = 4.2 m/s + a · t

-4.2 m/s / t = a

Replacing in the equation of the position:

x = v0 · t + 1/2 · a · t²      (considering x0 as the point at which the hare started to slow down)

13 m = 4.2 m/s · t - 1/2 · 4.2 m/s / t · t²

13 m = 4.2 m/s · t - 2.1 m/s · t

13 m = 2.1 m/s · t

t = 13 m / 2.1 m/s

t = 6.2 s

Then, the acceleration of the hare while slowing down will be:

-v0/t = a

-4.2 m/s / 6.2 s = a

a = -0.68 m/s²

The acceleration of the hare once it begins to slow down is -0.68 m/s²

The hare traveled 72 m in (6.2 s + 11.7 s + 4.7 s) 22.6 s. The tortoise reaches the final position of the hare at the same time, so, using the equation of the position we can calculate the acceleration of the tortoise:

x = x0 + v0 · t + 1/2 · a · t²     (x0 = 0 and v0 = 0)

x = 1/2 · a · t²

72 m = 1/2 · a · (22.6 s)²

144 m / (22.6 s)² = a

a = 0.28 m/s²

The acceleration of the tortoise is 0.28 m/s²

6 0
3 years ago
A 98.0 N grocery cart is pushed 12.0 m along an aisle by a shopper who exerts a constant horizontal force of 40.0 N. If all fric
Digiron [165]

Answer:

9.8 m/s

Explanation:

The work done by the force pushing the cart is equal to the kinetic energy gained by the cart:

W=K_f -K_i

where

W is the work done

K_f is the final kinetic energy of the cart

K_i is the initial kinetic energy of the cart, which is zero because the cart starts from rest, so we can write:

W=K_f

But the work is equal to the product between the pushing force F and the displacement, so

W=Fd=(40.0 N)(12.0 m)=480 J

So, the final kinetic energy of the cart is 480 J. The formula for the kinetic energy is

K_f=\frac{1}{2}mv^2 (1)

where m is the mass of the cart and v its final speed.

We can find the mass because we know the weight of the cart, 98.0 N:

m=\frac{F_g}{g}=\frac{98.0 N}{9.8 m/s^2}=10 kg

Therefore, we can now re-arrange eq.(1) to find the final speed of the cart:

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(480 J)}{10 kg}}=9.8 m/s



7 0
3 years ago
9. A 30 cm ruler is found to have a center of mass of 15.6 cm. The percent error of the center of mass is _____, if the ruler is
grigory [225]

Answer:

3.85 percent

Explanation:

From the question,

Percentage error = (error/actual)×100................ Equation 1

Given: actual center of mass = 15 cm, error = 15.6-15 = 0.6 cm

Substitute these values into equation 1

Percentage error = (0.6/15.6)×100

Percentage error = 3.85 percent

Hence the percentage error of the uniform mass = 3.85 percent

4 0
3 years ago
Other questions:
  • How and why land and sea breezes form?
    8·1 answer
  • What object best represents a true scale model of the shape of earth?
    12·1 answer
  • How did Rachel carsons book, silent spring, alter the way people thought about and treated the Earth?
    14·2 answers
  • What does N.W.A means?
    8·1 answer
  • Explain why lenses are used for particular applications. ( please write a long detailed answer )
    5·1 answer
  • The magnetic field lines of a bar magnet spread out from the
    12·2 answers
  • A person suffering from hyponatremia has which of the following?a. Too little sodium in the bloodb. Too much sodium in the blood
    14·1 answer
  • The relative density of oxygen and carbon dioxide are 16, 12 respectively. If 25cm3 of carbon dioxide effuse out in 75 sec what
    14·1 answer
  • A 20 kg sled stars at the top of a hill which is 10 m above the bottom and slides a distance of 50 m, ending at the bottom of th
    15·1 answer
  • explain " you can not apply a force to an object with out that object applying the same force back to you"​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!