The absence of external forces will make the pucks move in the form of a uniform circular motion.
<h3>What is a circular motion?</h3>
It should be noted that a circular motion simply means the movement of an object along the circumference of the circle.
In this case, the absence of external forces will make the pucks move in the form of a uniform circular motion.
If the friction is absent, the pucks will continue to move on the same path due to the first law of Newton and the law of conversation of energy. In this case,the results will match the predictions until there's loss in energy.
Learn more about circular motion on:
brainly.com/question/106339
Answer:
= 4.86 s
= 1.98 s
Explanation:
<u><em>Given:</em></u>
Length = l = 1 m
Acceleration due to gravity of moon =
= 1.67 m/s²
Acceleration due to gravity of Earth =
= 10 m/s²
<u><em>Required:</em></u>
Time period = T = ?
<u><em>Formula:</em></u>
T = 2π 
<u><em>Solution:</em></u>
<u>For moon</u>
<em>Putting the givens,</em>
T = 2(3.14) 
T = 6.3 
T = 6.3 × 0.77
T = 4.86 sec
<u>For Earth,</u>
<em>Putting the givens</em>
T = 2π 
T = 2(3.14) 
T = 6.3 × 0.32
T = 1.98 sec
Answer:

Explanation:
<h3>Given Data:</h3>
Mass = m = 68 kg
Velocity = v = 30 m/s
Time = 2 hours = 2 × 60 × 60 = 7200 s
<h3>Required:</h3>
Force = F = ?
<h3>Formula to be used:</h3>

<h3>Solution:</h3>
![\displaystyle F = \frac{(68)(30)}{7200} \\\\F = \frac{2040}{7200} \\\\F = 0.28 N\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F%20%3D%20%5Cfrac%7B%2868%29%2830%29%7D%7B7200%7D%20%5C%5C%5C%5CF%20%3D%20%5Cfrac%7B2040%7D%7B7200%7D%20%5C%5C%5C%5CF%20%3D%200.28%20N%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф
Work in general is given by W=F·d where F is the force vector and d is the displacement vector. The dot symbol is the dot product which is a measure of how parallel two vectors are. It can be replaced by the cosine of the angle between the two vectors and the vectors replaced by their magnitudes. If F and d are parallel then the angle is zero and the cosine is unity. So in this case work can be defined as the product of the magnitudes of the force and distance:
W=Fd