9 × 10²¹ electrons flow through a cross section of the wire in one hour.
<h3>What is the relation between current and charge?</h3>
- Mathematically, current = charge / time
- In S.I. unit, Charge is written in Coulomb and time in second.
<h3>What is the amount of charge flown through a wire for one hour if it carries 0.4 A current?</h3>
- Charge= current × time
- Current= 0.4 A, time = 1 hour= 3600 s
- Charge= 0.4× 3600
= 1440 C
<h3>How many numbers of electrons present in 1440C of charge?</h3>
- One electron= 1.6 × 10^(-19) C
- So, 1440 C = 1440/1.6 × 10^(-19)
= 9 × 10²¹ electrons
Thus, we can conclude that the 9 × 10²¹ electrons flow through a cross section of the wire in one hour.
Learn more about current here:
brainly.com/question/25922783
#SPJ1
Answer:
V_f = 287.04 mL
Explanation:
We are given the initial/original volume of the glycerine as 285 mL.
Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;
V_f = V_i (1 + βΔT)
Where;
V_f is the final volume
V_i is the original volume = 285 mL
β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)
Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C
Thus, plugging in relevant values;
V_f = 285(1 + (5.97 × 10^(-4) × 12))
V_f = 287.04 mL
B an open system flow both