The Battle of the Bulge in the winter of 1944 was the last Great German offensive of the Second World War.
Hello!
Charging by conduction involves the contact of a charged object to a neutral object. Suppose that a positively charged aluminum plate is touched to a neutral metal sphere. The neutral metal sphere becomes charged as the result of being contacted by the charged aluminum plate.
Hope this helped!
The initial force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:
1. F
In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.
So, we have:

So, the new force is:

So the force has not changed.
2. F/4
In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.
So, we have:

So, the new force is:

So the force has decreased by a factor 4.
3. 6F
In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.
So, we have:

So, the new force is:

So the force has increased by a factor 6.
Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>
It takes sunlight 8 minutes to reach earth , so yes