Answer:
a) 5 N b) 225 N c) 5 N
Explanation:
a) Per Coulomb's Law the repulsive force between 2 equal sign charges, is directly proportional to the product of the charges, and inversely proportional to the square of the distance between them, acting along the line that joins the charges, as follows:
F₁₂ = K Q₁ Q₂ / r₁₂²
So, if we make Q1 = Q1/5, the net effect will be to reduce the force in the same factor, i.e. F₁₂ = 25 N / 5 = 5 N
b) If we reduce the distance, from r, to r/3, as the factor is squared, the net effect will be to increase the force in a factor equal to 3² = 9.
So, we will have F₁₂ = 9. 25 N = 225 N
c) If we make Q2 = 5Q2, the force would be increased 5 times, but if at the same , we increase the distance 5 times, as the factor is squared, the net factor will be 5/25 = 1/5, so we will have:
F₁₂ = 25 N .1/5 = 5 N
Answer:
The energy becomes 4 times greater.
Explanation:
We know that the energy of a wave is proportional to the square of its amplitude
E ∝ Amplitude^2
Since the original amplitude = 0.5 m
and the new amplitude becomes = 1 m
We are doubling the amplitude. This means that the new energy will be affected by a factor of 4
E_new ∝ (2*Amplitude)^2 =
E_new ∝ 4*(Amplitude)^2
E_new = 4*E
Answer:
Nuclear energy comes from splitting atoms in a reactor to heat water into steam, turn a turbine and generate electricity. Ninety-three nuclear reactors in 28 states generate nearly 20 percent of the nation's electricity, all without carbon emissions because reactors use uranium, not fossil fuels.
<h2>please follow me</h2>
A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 320 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 3500-kg car, find the maximum attainable speed of the car.