Answer:
<em>The slope of the line</em> 3.
Step-by-step explanation:
The line is going through 3. Although<em> it is not -3,</em> because if the line is <em>sloping upward from left to right,</em> then the slope is <em>positive (+)</em>. If the line is <em>sloping downward from left to right,</em> the slope is <em>negative (-).</em>
<u>Given</u>:
The quadratic equation is 
We need to determine the solutions of the quadratic equation.
<u>Solution</u>:
Let us solve the equation to determine the value of x.
Adding both sides of the equation by 5x and 3, we get;

The solution of the equation can be determined using quadratic formula.
Thus, we get;



Thus, the two roots of the equation are
and 
Hence, the solutions of the equation are
and 
Answer:
Option d) 5 to the power of negative 5 over 6 is correct.
![\dfrac{\sqrt[3]{\bf 5} \times \sqrt{\bf 5}}{\sqrt[3]{\bf 5^{\bf 5}}}= 5^{\frac{\bf -5}{\bf 6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B%5Cbf%205%7D%20%5Ctimes%20%5Csqrt%7B%5Cbf%205%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cbf%205%5E%7B%5Cbf%205%7D%7D%7D%3D%205%5E%7B%5Cfrac%7B%5Cbf%20-5%7D%7B%5Cbf%206%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
ie, 
Step-by-step explanation:
Given that cube root of 5 multiplied by square root of 5 over cube root of 5 to the power of 5.
It can be written as below
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}} \times 5^{\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}+\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{2+3}{6}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B2%2B3%7D%7B6%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5}{6}} \times 5^{\frac{-5}{3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B-5%7D%7B3%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5-10}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5-10%7D%7B6%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{5^5}= 5^{\frac{-5}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B5%5E5%7D%3D%205%5E%7B%5Cfrac%7B-5%7D%7B6%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
Answer:
what is the area of triangle ABC choices
35 square unit
The correct answer would be D because if there are points at -8 and -2, those are the numbers that are plotted.