Probably not but I wouldn’t risk it
Answer:
The molarity of the HCl solution should be 4.04 M
Explanation:
<u>Step 1:</u> Data given
volume of HCl solution = 10.00 mL = 0.01 L
volume of a 1.6 M NaOH solution = 25.24 mL = 0.02524 L
<u>Step 2:</u> The balanced equation
HCl + NaOH → NaCL + H2O
Step 3: Calculate molarity of HCl
n1*C1*V1 = n2*C2*V2
Since the mole ratio for HCl and NaOH is 1:1 we can just write:
C1*V1 =C2*V2
⇒ with C1 : the molarity of HCl = TO BE DETERMINED
⇒ with V1 = the volume og HCl = 10 mL = 0.01 L
⇒ with C2 = The molarity of NaOH = 1.6 M
⇒ with V2 = volume of NaOH = 25.24 mL = 0.02524 L
C1 * 0.01 = 1.6 * 0.02524
C1 = (1.6*0.02524)/0.01
C1 = 4.04M
The molarity of the HCl solution should be 4.04 M
We can say that the water is the solvent, and the powder is the solute. This is also a solution altogether.
Explanation:- A solute is the thing being dissolved into the solvent. While the solvent is what when the solute is being dissolved in. Together, they make a solution.
Mercury (ii) oxide is made up of mercury and oxygen. The total mass of mercury (ii) oxide is 14.2 g, after decomposition 13.2 g of mercury were formed, therefore the mass of oxygen 1 g (14.2 g -13.2 g).
Percentage of oxygen = (1/14.2)×100 = 7.04%
Percentage of mercury = (13.2/14.2) × 100 = 92.96%
Therefore, percentage composition of the compound, oxygen is 7.04% and mercury is 92.96%.