Answer:
During a solar flare, the built up magnetic energy n the solar atmosphere is released at once. If a strong solar flare hits the earth, it is most possible that it will destroy the electronics. It is not expected to effect any human beings unless they are travelling towards the outer space are living at higher altitudes.
It can lead to skin can in case of extreme exposures.
I hope the answer is helpful.
Thanks for answering.
Answer:
See whole explanation to understand
Explanation:
the reason why there is such a large jump from 2nd to 3rd ionization energy for calcium is because to remove the third electron, a larger amount of energy is required, since the shell is closer to the nucleus, and higher attraction exists between them. This is why the second ionization energy is 1125.4 and then the third IE is 4912.4 which is a very big difference. It's all about the elections and energy!!
Answer:
C.
will precipitate out first
the percentage of
remaining = 12.86%
Explanation:
Given that:
A solution contains:
![[Ca^{2+}] = 0.0440 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%200.0440%20%5C%20M)
![[Ag^+] = 0.0940 \ M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%20%3D%200.0940%20%5C%20M)
From the list of options , Let find the dissociation of 

where;
Solubility product constant Ksp of
is 
Thus;
![Ksp = [Ag^+]^3[PO_4^{3-}]](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BAg%5E%2B%5D%5E3%5BPO_4%5E%7B3-%7D%5D)
replacing the known values in order to determine the unknown ; we have :
![8.89 \times 10 ^{-17} = (0.0940)^3[PO_4^{3-}]](https://tex.z-dn.net/?f=8.89%20%5Ctimes%2010%20%5E%7B-17%7D%20%20%3D%20%280.0940%29%5E3%5BPO_4%5E%7B3-%7D%5D)
![\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3} = [PO_4^{3-}]](https://tex.z-dn.net/?f=%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D%20%20%3D%20%5BPO_4%5E%7B3-%7D%5D)
![[PO_4^{3-}] =\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D)
![[PO_4^{3-}] =1.07 \times 10^{-13}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D1.07%20%5Ctimes%2010%5E%7B-13%7D)
The dissociation of 
The solubility product constant of
is 
The dissociation of
is :

Thus;
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = (0.0440)^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%3D%20%280.0440%29%5E3%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![\dfrac{2.07 \times 10^{-33} }{(0.0440)^3}= [PO_4^{3-}]^2](https://tex.z-dn.net/?f=%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D%3D%20%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![[PO_4^{3-}]^2 = \dfrac{2.07 \times 10^{-33} }{(0.0440)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D)
![[PO_4^{3-}]^2 = 2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%202.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] = \sqrt{2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%20%5Csqrt%7B2.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] =4.93 \times 10^{-15}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D4.93%20%5Ctimes%2010%5E%7B-15%7D)
Thus; the phosphate anion needed for precipitation is smaller i.e
in
than in

Therefore:
will precipitate out first
To determine the concentration of
when the second cation starts to precipitate ; we have :
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = [Ca^{2+}]^3 (1.07 \times 10^{-13})^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2)
![[Ca^{2+}]^3 = \dfrac{2.07 \times 10^{-33} }{(1.07 \times 10^{-13})^2}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D%20%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2%7D)
![[Ca^{2+}]^3 =1.808 \times 10^{-7}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D1.808%20%5Ctimes%2010%5E%7B-7%7D)
![[Ca^{2+}] =\sqrt[3]{1.808 \times 10^{-7}}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%5Csqrt%5B3%5D%7B1.808%20%5Ctimes%2010%5E%7B-7%7D%7D)
![[Ca^{2+}] =0.00566](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D0.00566)
This implies that when the second cation starts to precipitate ; the concentration of
in the solution is 0.00566
Therefore;
the percentage of
remaining = concentration remaining/initial concentration × 100%
the percentage of
remaining = 0.00566/0.0440 × 100%
the percentage of
remaining = 0.1286 × 100%
the percentage of
remaining = 12.86%