Answer:
Energy
Explanation:
Heat is a form of energy.
Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
is it decomp single replacement double replacement
The question above can be solved by using this equation:
CAVA =CBVB
Where:
CA =Concentration of acid = 1.0 M
VA = Volume of acid = ?
CB = Concentration of base = 1.0 M
VB = Volume of base = 25 ml
VA = CBVB / CA
VA = [1 * 25] / 1 = 25 / 1 = 25
VA = 25 ml
Therefore, the volume of acid that is required to completely neutralize the base is 25 ml.<span />