The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
What is the weight of a 4.2 kg bowling ball on Mars?
Answer:
1.59 kg
Explanation:
The formula is:
<u>F = G((Mm)/r2)
</u>
F is the gravitational force between two objects,
G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),
M is the planet's mass (kg),
m is your mass (kg), and
r is the distance (m) between the centers of the two masses (the planet's radius).
Hope this helps
--Jay
Answer:
Explanation:
First of all, we need to find the pressure exerted on the sphere, which is given by:
where
is the atmospheric pressure
is the water density
is the gravitational acceleration
is the depth
Substituting,
The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m
So the total area of the sphere is
And so, the inward force exerted on it is
On a flat surface a moving bicycle has more kinetic energy than a stationary car
Answer:
Energy
A wave is a disturbance that carries energy from one place to another through matter and space.
Explanation:
A wave can be defined as a form of disturbance that carries energy from one place to another through matter and space.
The energy of wave depends on the frequency of the wave and the wavelength (lambda) of that particular wave.
Mathematically,
V = f × lambda