Answer:
d²x/dt² = - 4dx/dt - 4x is the required differential equation.
Explanation:
Since the spring force F = kx where k is the spring constant and x its extension = 2.45 equals the weight of the 4 kg mass,
F = mg
kx = mg
k = mg/x
= 4 kg × 9.8 m/s²/2.45 m
= 39.2 kgm/s²/2.45 m
= 16 N/m
Now the drag force f = 16v where v is the velocity of the mass.
We now write an equation of motion for the forces on the mass. So,
F + f = ma (since both the drag force and spring force are in the same direction)where a = the acceleration of the mass
-kx - 16v = 4a
-16x - 16v = 4a
16x + 16v = -4a
4x + 4v = -a where v = dx/dt and a = d²x/dt²
4x + 4dx/dt = -d²x/dt²
d²x/dt² = - 4dx/dt - 4x which is the required differential equation
The other structures near the hypothalamus are thalamus and the pituitary gland.
Hypothalamus is located below the thalamus and is part of the limbic system. It is an integral part of the brain, it is a small cone-shaped structure that projects down ward from the brain, ending in the pituitary stalk, a tubular connection to the pituitary gland.
Humid tropical climates are climates that have no winters.
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.
where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.
Answer:
It would be A, because it is has more height in which the potential energy would be greater.