Moles = mass/molar mass
moles = 2.3
molar mass = 278
=> mass = moles*molar mass = 639.4g
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml
</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100
</span>therefore:
V1 = 20 ml
Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.
Answer:
It is difficult, if not impossible, to heat a solid above its melting point because the heat that ... in a solid are packed in a regular structure that is characteristic of that particular substance.
<h3>#carryONlearning </h3>
Answer:
Answer is D.Blue.
Explanation:
The hottest stars tend to appear blue or blue-white, whereas the coolest stars are red.
I hope it's helpful!