<span>Answer:
From the ideal gas law, MM=mRTPV; where MM = molecular mass; m = mass; P = pressure in atmospheres; V= volume in litres; R = gas constant with appropriate units.
So, 0.800â‹…gĂ—0.0821â‹…Lâ‹…atmâ‹…Kâ’1â‹…molâ’1Ă—373â‹…K0.256â‹…LĂ—0.987â‹…atm = 97.0 gâ‹…molâ’1.
nĂ—(12.01+1.01+2Ă—35.45)â‹…gâ‹…molâ’1 = 97.0â‹…gâ‹…molâ’1.
Clearly, n = 1. And molecular formula = C2H2Cl2.
I seem to recall (but can't be bothered to look up) that vinylidene chloride, H2C=C(Cl)2 is a low boiling point gas, whereas the 1,2 dichloro species is a volatile liquid. At any rate we have supplied the molecular formula as required.</span>
7. Atomic mass
8. Atomic number
9. Chemical symbol
10. Right
Answer:
Volume of water at this temperature is 27.2 mL
Explanation:
We know that 
Here density of water is 0.992 g/mL
Here mass of water is 27.0 g
So 
= 
= 27.2 mL
Your answer is B, conservation of mass
Recall that percent yield is given by: %Yeild = actual yeild/theoretical yeild x100
During experiments, there are errors made:
• uncertainty in measurements
• losses of reactants and products
• impurity in reactants
• losses during separation (e.g. filtration or purification)
• Some side reactions might also happen.
Among the given options, only conservation of mass does not contribute to a lower actual yield compared to the theoretical yield.