Answer:
B
Explanation:
Heating a piece of iron until it glows.
Chemical energy is the kind of energy stored in the bonds formed by atoms and molecules in chemical compounds and elements. This energy is released during a chemical reaction and heat is often given out in the process. These kind of reactions where heat is given out as a by product are called exothermic reactions.
The major factor that determines how much chemical energy a substance has is the mass of that substance. Mass is defined as the amount of matter in a substance.
The higher the mass of a substance, the more concentrated that substance is and subsequently the greater the number of atoms and molecules.
Logically, the higher the number of atoms and molecules then the greater the number of bonds in that substance and subsequently the more the amount of chemical energy stored therein.
When you want to melt an ice, you only need the latent energy of fusion, <span>δhfus. We use the given value, then multiply this with the given amount to determine the amount of energy. Since the energy is per mole basis, use the molar mass of ice which is 18 g/mol. The solution is as follows:
</span>ΔH = 5.96 kJ/mol * 1 mol/18 g * 500 g
<em>ΔH = 165.56 kJ</em><span>
</span>
Answer:
the melting point of aluminum is 660 degrees Celsius.
Answer:
H_2O + 2CrO_4^2- + 3SO_3^2- -> 3SO_3^2- + 2CrO_2^- + 2OH^-
Explanation:
Reduction half reaction
2H_2O + CrO_4^2- + 3e -> CrO_2^- + 4OH^-
Oxidation half reaction
2OH^- + SO_3^2- -> SO_4^2- + H_2O + 2e
Balanced overall equation
H_2O + 2CrO_4^2- + 3SO_3^2- -> 3SO_3^2- + 2CrO_2^- + 2OH^-