The amount of W(OH)2 needed would be 448.126 g
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
W(OH)2 + 2 HCl → WCl2 + 2 H2O
The mole ratio of W(OH)2 to HCl is 1:2
Mole of 150g HCl = 150/36.461
= 4.11 moles
Equivalent mole of W(OH)2 = 4.11/2
= 2.06 moles
Mass of 2.06 moles W(OH)2 = 2.06 x 217.855
= 448.188g
More on stoichiometric calculations can be found here: brainly.com/question/8062886
Linking monomers together to form a polymer .This chemical reaction also forms water molecules.
<h3>What is Polymerization?</h3>
This is a type of reaction which involves the linking of two or more monomers to form a polymer.
Dehydration reaction forms water molecules as part of the product thereby making it the most appropriate choice.
Read more about Dehydration here brainly.com/question/1301665
#SPJ1
Using the chart that has been provided, we may determine water temperature. We do this by drawing a straight line form the bottom scale which has the ppm of oxygen dissolved to the middle scale which has the percentage saturation.
The line starts from 11.5 ppm on the bottom scale and goes to 90% on the middle scale. Next, we continue this line, without changing its slope, to the third scale showing temperature. We see that it crosses the temperature scale at 4°C.
The temperature of the water is 4 °C.
Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
The primary structure is the amino acids' unique sequence. The polypeptide's local folding to form structures such as the α-helix and β-pleated sheet constitutes the secondary structure. The overall three-dimensional structure is the tertiary structure