1. In the first 1.5 seconds, the lift accelerates from 0 to 3m/s. By definition, the acceleration is the ratio between the change in velocity and the time elapsed to change the velocity.
The change in velocity is
.
The time elapsed is 1.5 seconds, so the acceleration is
meters per second squared.
2. We know, from the previous point, that the lift travelled 20m from the first floor. Since it returns to the first floor after the ascent, it must travel again those same 20m, just in reverse (descending instead of ascending). So, the total distance travelled is
meters.
The displacement, though, is zero, because it measures the distance between the starting and ending point of a certain motion. Since the lift starts and ends its motion at the same place (the first floor), its total displacement is zero.
Answer:Explained
Explanation:
The scientist of that time could not believe that the electromagnetic waves do not require a medium to travel through so they made a space filling substance necessary to travel of electromagnetic waves called aether.
But after the special 0 theory of relativity this idea is discarded and fell out.
Answer:
when an object has more velocity, it tends to have less potential energy and more kinetic energy.
Explanation:
kinetic energy is the energy of movment and velocity helps to describe movement
Answer: A cold front occurs when a cold air mass advances into a region occupied by a warm air mass. If the boundary between the cold and warm air masses doesn't move, it is called a stationary front.
Explanation: Two types of occluded front exist: the warm-type and the cold-type. They’re distinguished by the relative temperatures of the air mass ahead of the occlusion – in other words, the air mass ahead of the original warm front – and the air mass behind the cold front. If the air behind the cold front is colder than the air ahead of the occlusion, it shoves beneath that air (because it’s denser) to form a cold-type occluded front. If the air behind the cold front is warmer than the air ahead, it rides over it to form a warm-type occluded front – which appears to be the more common case. In either situation, the lighter warm air representing the air mass originally between the warm and cold fronts sits above the boundary between the two cooler air masses.
Hope this helps!!