2KClO3 --> 2KClO2 + O2
12 6 (moles)
The ratio of KClO3 and O2 is 2:1. This means 2 moles of KClO3 can create 1 mole of O2. So 12 moles of KClO3 will create 6 moles of O2.
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4
Compounds Na₂SO₄ and NaCl are mixed together are we are asked to find the concentration of Na⁺ in the mixture
Na₂SO₄ ---> 2 Na⁺ + SO₄³⁻
1 mol of Na₂SO₄ gives out 2 mol of Na⁺ ions
the number of Na₂SO₄ moles added - 0.800 M/1000 * 100 ml
= 0.08 mol
therefore number of Na⁺ ions from Na₂SO₄ = 0.08 * 2 = 0.16 mol
NaCl ----> Na⁺ + Cl⁻
1 mol of NaCl gives 1 mol of Na⁺ ions
number of NaCl moles added = 1.20 M/1000 * 200 ml
= 0.24 mol
number of Na⁺ ions from NaCl = 0.24 mol
total number of Na⁺ ions in the mixture = 0.16 mol + 0.24 mol = 0.4 mol
as stated the volumes are additive,
therefore total volume = 100 ml + 200 ml = 300 ml
the concentration of Na⁺ ions = number of moles / volume
= 0.4 mol/ 0.3 dm³
concentration of Na⁺ = 1.33 mol/dm³
Answer:
Q.89
Alkane - CnH(2n+2)
given that 8 H = > 8= 2n+2
therefore n= 3
C3H8 = 12×3 + 8×1= 36 +8 = 44
Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths.
Not sure if this is 100% but I hope it helps.