D atoms that are in only one of the reactions and only one of the products should be down first
Mixing baking soda with vinegar to form CO2
(Isn't the one used to make volcano models)
Answer:
Clarity and precision - these names are unique with each creature having only one scientific name. Helps avoid confusion created by common names. 3. Universal recognition - scientific names are standardised and accepted universally
Explanation:
Burning a magnesium ribbon in the air is an addition reaction while heating potassium manganate 7 is a decomposition reaction.
<h3>Addition and decomposition reactions</h3>
Magnesium burns in air to produce magnesium oxide as follows:

Potassium manganate 7 burns to produce multiple products as follows:

Thus, the MgO will be heavier than Mg. On the other hand,
will be less heavy than
.
More on reactions can be found here: brainly.com/question/17434463
#SPJ1
Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J