Answer:
5.7 moles of O2
Explanation:
We'll begin by writing the balanced decomposition equation for the reaction. This is illustrated below:
2KClO3 —> 2KCl + 3O2
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Next, we shall determine the number of mole of O2 produced by the reaction of 3.8 moles of KClO3.
Since 100% yield of O2 is obtained, it means that both the actual yield and theoretical yield of O2 are the same. Thus, we can obtain the number of mole of O2 produced as follow:
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Therefore, 3.8 moles of KClO3 will decompose to produce = (3.8 × 3)/2 = 5.7 moles of O2.
Thus, 5.7 moles of O2 were obtained from the reaction.
Answer:
the answer is B.
No, as ionic compounds are only conductive in an aqueous (water) solution
Explanation: i just know
Answer:
The correct option is: a. The internal energy depends upon its temperature.
Explanation:
Ideal gas is a hypothetical gas that obeys the ideal gas law. The equation for the ideal gas law:
P·V=n·R·T
Here, V- volume of gas, P - total pressure of gas, n- total mass or number of moles of gas, T - absolute temperature of gas and R- the gas constant
Also, according to the Joule's second law, the <em><u>internal energy (U) of the given amount of ideal gas depends on the absolute temperature (T) of the gas only,</u></em> by the equation:

Here,
<em>is the specific heat capacity at constant volume</em>
Density measures how tightly packed particles are.
If particles are tightly packed together, they will be more dense.
If they are loosely together, they will be less dense.
However, a common mistake is thinking that if something
is more dense it means that it's heavier.
However, that's not the case.
It has to do with how particles are packed in an object.