substitute: <span><span>t<span>1/2</span></span>=<span><span>ln(2)</span>k</span>→k=<span><span>ln(2)</span><span>t<span>1/2</span></span></span></span>
Into the appropriate equation: <span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−kt</span></span></span>
<span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−<span><span>ln(2)</span><span>t<span>1/2</span></span></span>t</span></span></span>
<span>[A<span>]t</span>=(250.0 g)∗<span>e<span>−<span><span>ln(2)</span><span>3.823 days</span></span>(7.22 days)</span></span>=67.52 g</span>
It starts at the bottom and then it goes up into the air as evaporation and that’s when the air gets cooler so gas is cooler and the liquid would be hotter
<span>283.89 g/mol is the molar mass of tetraphosphorus decoxide</span>
Answer:
Empirical formula is CH₄
Molecular formula = C₂H₈
Explanation:
Mass of carbon = 37.5 g
Mass of hydrogen = 12.5 g
Molecular weight = 32 g/mol
Molecular formula = ?
Empirical formula = ?
Solution:
Number of gram atoms of C = 37.5 g /12g/mol = 3.125
Number of gram atoms of H = 12.5 g / 1.008 g/mol= 12.4
Atomic ratio:
C : H
3.125/3.125 : 12.4 /3.125
1 : 4
C : H : = 1 : 4
Empirical formula is CH₄
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
n = 32 / 16
n = 2
Molecular formula = n (empirical formula)
Molecular formula = 2 ( CH₄)
Molecular formula = C₂H₈
Probably the most important monosaccharide on earth is Glucose. it is used in many bodily functions and it a key source of energy