For the answer to the question above asking, h<span>ow many moles of glucose (C6H12O6) are in 1.5 liters of a 4.5 M C6H12O6 solution?
The answer to your question is the the third one among the given choices which is 6.8 mol.
</span><span>moles glucose = 1.5 x 4.5 = 6.8 </span>
As the air molecules move through the valve they have friction as they hit the walls, and its this friction that causes it to heat up.
Explanation:
First, we will calculate fuel consumption is as follows.

= 4526 g/s
Now, we will calculate the power as follows.
Power = Fuel consumption rate × -enthalpy of combustion
= 
=
kW
Thus, we can conclude that maximum power (in units of kilowatts) that can be produced by this spacecraft is
kW.
Answer:
Player B
Explanation:
I just did it and I got it right :)
Answer:

Explanation:
We are given the mass, specific heat, and temperature, so we must use this formula for heat energy.

The mass is 5 grams, the specific heat capacity is 0.14 Joules per gram degree Celsius. Let's find the change in temperature.
- ΔT= final temperature - initial temperature
- ΔT= 95°C - 15°C = 80°C
We know the variables and can substitute them into the formula.


Multiply the first numbers. The grams will cancel.

Multiply again. This time the degrees Celsius cancel.

56 Joules of heat are needed.