Answer:
https://www.slader.com/discussion/question/an-electron-is-accelerated-through-240-times-103-v-from-rest-and-then-enters-a-uniform-170-t-magnetic-field-what-are-a-the-maximum-and-b-the-9e425fbd/
( Here is solution)
Answer: magnitude of applied force is FA = mg + F
Where F is the resultant force downward that the rope moves with
Explanation:
Force downwards F is,
F = FA - T
T is the upwards tension force on the rope
FA is the actual applied force in pulling the rope down.
Therefore, T = FA - F .....equ. (1)
For the box to move up with force ma ( it's mass times its acceleration upwards) upwards tension on the roap must exceed its own weight mg ( it's mass times acceleration due to gravity 9.8m/s^2)
Therefore, ma = T - mg
T = ma + mg ..... equ. (2)
Equating equ. 1 and 2
T = FA - F = ma + mg
Therefore FA = ma + mg + F
But at constant velocity a = 0
Magnitude of applied force becomes
FA = mg + F
See image below
To find out time, you put distance over speed. So you would have to put 150 over 50. You divide 150 by 50 and you would get 3. So your answer is 3 hours.
Answer:
Stronger and harder than either of the pure metals
Explanation:
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
W done by Normal = 0. (make the incline flat, Normal force goes directly up: no work done)
<span>W done by gravity = w*displacement = (11kg*9.8) * 7.5sin(35) = -463J </span>
<span>W done by friction is the opposite of the work done by weight because the object is not moving. Therefore W done by friction = 463J</span>