Without air resistance, there is no horizontal force on the projectile,
so it has no horizontal acceleration. The answer is "zero".
The question is not well presented.
There is ______ shift in sound frequency for observers towards whom the source is approaching.
Answer:
The gap should be filled with an apparent upward
Explanation:
The Doppler effect (also referred to as the Doppler shift) is the difference in frequency of a wave when related to an observer who has a relative movement to the wave source
The Doppler effect can be observed to occur with all types of waves - most notably water waves, sound waves, and light waves
The Doppler effect describes sound as an effect which is produced from a moving source of wave.
According to the Doppler effect;
When the source of waves in which there is an apparent upward shift in frequency for observers towards whom the source is approaching.
Let u = initial vertical velocity.
Assume that
g = 9.81 m/s²,
Wind resistance is ignored.
When t = 0.220 s, the height is h = 0.537 m. Therefore
0.537 m = (u m/s)*(0.220 s) - (1/2)*(9.81 m/s²)*(0.220 s)²
0.537 = 0.22u - 0.2372
u = 3.519 m/s
The upward velocity after 0.220 s is
v = 3.519 - 9.81*0.22 = 1.363 m/s
At maximum height, the upward velocity is zero. The maximum height, H, is given by
(3.519 m/s)² - 2*(9.81 m/s²)*(H m) = 0
12.3834 - 19.6H = 0
H = 0.632 m
It goes higher by 0.632 - 0.537 = 0.095 m
Answers:
(a) The initial speed is 3.519 m/s.
(b) The speed at 0.537 m height is 1.363 m/s.
(c) It goes higher by 0.095 m.
Your answer is C)
a)t=2.78 sec
b)R=835.03 m
c)
Explanation:
Given that
h= 38 m
u=300 m/s
here given that
The finally y=0
So
t=2.78 sec
The horizontal distance,R
R= u x t
R=300 x 2.78
R=835.03 m
The vertical component of velocity before the strike