Because upward buoyant force is slightly higher than gravitation force for this particular object
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Answer:

Explanation:
The power provided by a resistor (wire in this case) is given by:
.
The resistance of a wire is given by:

Where for the resistivity the one of the copper should be used:
.
The area A is that of a circle, which written in terms of its diameter is:

Putting all together:

Which for our values is:

D. All of the above. When a wire loop is moved or rotated in a magnetic field, there is a change in magnetic flux which produces emf in wire loop and hence electric current is produced.
Answer:
Explanation: Please see my attached calculations.