5. Eubacteria
6. Plantae
7. Animalia
8. Protist (technically not a kingdom)
9. Archaebacteria
10. Fungi
Answer:The formula for the compound formed between sodium and oxygen will be Na2O; a ratio of 2 Na atoms for each O atom.
Explanation:
They are pumped across the mitochondrial inner membrane against their concentration gradient (to where their concentration is high); as the H+ ions flow back to where their concentration is low, they drive ATP synthase to form ATP
Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
> 2,000
mL of a 5.0 × 10–5% (w/v) sucrose solution
5.0 × 10–3
g/mL * 2000 mL * (1 mol / 342.30 g) = 0.0292 mol
<span>
> 2,000 mL of a 5.0 ppm sucrose solution</span>
5 grams /
1000000 mL * 2000 mL* (1 mol / 342.30 g) = 0.0000292 mol
<span>
> 20 mL of a 5.0 M sucrose solution </span>
5.0 M *
0.020 L = 0.1 mol
Answer:
<span>2,000 mL
of a 5.0 ppm sucrose solution</span>