We're u can never put it back together
Answer:
1)a. It is constant the whole time the ball is in free-fall.
2)b. = 14 m/s
3) e. = 19.6 m/s
Explanation:
1) given that the only force acting on the ball is gravity, gravity acts along the vertical axis. Since no other force acts on the ball then the horizontal velocity will remain constant all through the flight since there is no horizontal force acting on the ball.
2) speed = distance/time
horizontal distance = 56m
Time = 4 seconds
Speed = 56m/4s = 14m/s
3) acceleration due to gravity g = 9.8m/s^2
Initial vertical velocity = u
Final vertical velocity = v = -u
Using the law of motion;
v = u + at
a = acceleration = -g = -9.8m/s^2
t = time of flight = 4
Substituting the values;
-u = u - 4(9.8)
-2u = -4(9.8)
u = -4(9.8)/-2
u = 2(9.8) = 19.6 m/s
Initial vertical velocity = u = 19.6 m/s
AS
work done =W = F.d = F d cosФ (Ф is angle between force F and displacement d) If a body/object is moving on a smooth surface (friction-less surface ) .There is no force acting on that body. F=0 so W=FdcosФ= (0)dcosФ ⇒ W=0
Now if a body is facing some amount of force but under the action of force there is no displacement covered. d=0 so W =FdcosФ= F(0)cosФ ⇒W=0
example: A person is applying a force on rigid wall but wall remains at rest there is no displacement occurs in wall.
The third term upon which work done dependent is angle between force and displacement i.e Ф. If Ф=90° then W= FdcosФ= Fdcos90⇒ W=0 ( as cos 90°=0)
Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:
